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LONG-TERM GOALS 

To develop “exact” numerical methods and visualization techniques for the study of propagation of 
acoustic energy in shallow water in the time domain. Exact in this contexts means the methods place no 
restrictions on the underlying physics of the environment. 

OBJECTIVES 

To develop new, and enhance existing, numerical methods; to establish the accuracy, robustness, flexibil­
ity, and tractability of these methods; and to apply these methods to meaningful practical problems. To 
create a robust software suite for the application of the methods and to develop techniques for visualizing 
the propagation of scalar and vector fields in complex environments. 

APPROACH 

We have focused our attention on the development and use of finite-difference time-domain (FDTD) 
methods. These time-domain techniques, which are flexible, robust, and generally simple to implement, 
have previously been used by the electromagnetics community to solve a wide range of problems. We 
have established the accuracy of our proposed acoustic FDTD techniques by comparing to canonical 
problems which permit an exact solution or to results obtained using other numerical methods. The 
FDTD method is computationally intensive and, hence, to increase the ease with which FDTD can be 
applied to large problems, we are developing well-written, well-documented code to which incorporates 
the Parallel Virtual Machine paradigm to permit the solution of a problem using a cluster of workstations. 

WORK COMPLETED 

Fundamental aspects of material boundaries in FDTD models were studied and quantified; inherent prop­
erties and artifacts of the FDTD grid were rigorously explained; FDTD algorithms were developed; the 
corresponding computer programs were written; and information was disseminated via journal publica­
tions, conference presentations, and the Web. 
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RESULTS 

The FDTD method is obtained by discretizing the differential equations that govern the underlying sys­
tem. Using a Cartesian grid, the method provides an exceedingly simple way in which to express future 
fields (i.e., unknown fields) in terms of past fields (known fields). For propagation in a homogeneous 
region, the traditional FDTD method is accurate to second-order—doubling the number of grid points 
per wavelength reduces inherent numerical errors by a factor of four. However, the behavior and accu­
racy of fields at material interfaces is much more complicated. We have derived exact expressions for the 
transmission and reflection coefficients for fields normally and obliquely incident on planar boundaries. 
Interestingly, it was found that the accuracy of the reflection and transmission coefficients is a function 
of the discretization used on either side of the boundary. Thus, although one may be interested only in 
the fields on one side of a boundary, a sufficiently fine discretization must be used on the other side to 
ensure that the reflection coefficient is accurate enough to prevent corruption of the fields in the region 
of interest. This work was reported at the 2000 IEEE AP-S International Symposium and URSI Radio 
Science Meeting [1]. 

In addition to our analysis of homogeneous plane wave interaction with material boundaries, we also 
studied the propagation of inhomogeneous plane waves in the FDTD grid. Inhomogeneous plane waves 
are important because they are required to form a complete basis set with which any field can be de­
scribed. We derived the dispersion relation for inhomogeneous waves and showed that, in a lossless 
material, planes of constant phase are not necessarily orthogonal to planes of constant amplitude (as they 
must be in the continuous world). We showed how one could use the dispersion relation to determine 
exactly the behavior of evanescent fields in the FDTD grid when a wave is incident beyond the critical 
angle at a planar interface. We also firmly established several other characteristics of discretized worlds 
such as the inherent “grid velocity” (which is similar to Brillouin radiation in the continuous world). 
This work was published in IEEE Transactions on Microwave Theory and Techniques [2]. 

Previously we firmly established the ability of the FDTD method to model accurately scattering from 
randomly rough pressure-release surfaces. We have also made significant progress in establishing the 
use of FDTD methods for penetrable rough surfaces as described in a paper which appeared in IEEE 
Journal of Oceanic Engineering [3]. This work compares results obtained using the FDTD method and 
the method of moments. Though both methods have inherent numerical inaccuracies, their inaccuracies 
are independent such that when the results obtained by the two methods agree one can be confident 
of having obtained convergence to the correct solution. Scattering from both individual surfaces and 
collections of surfaces (i.e., Monte Carlo simulations) were studied and in all cases the FDTD method 
and the method of moment results showed good agreement. 

We have developed a new FDTD scheme for the modeling of continuously varying rigid boundaries. 
This new scheme uses a locally conformal approach so that the usual FDTD update equations apply 
everywhere away from the boundary. For points adjacent to the boundary, modified equations are used. 
This scheme is “low cost” since the coefficients used in the modified update equations can be calculated 
in a preprocessing stage. We have shown that this scheme significantly improves the accuracy over that 
obtained using a traditional stair-step representation of the boundary. This work was reported at the 
December 2000 ASA Meeting [4] and is described in a paper which was submitted to the Journal of the 
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Acoustical Society of America [5]. 

We have explored several new implementations of the FDTD method (proposed by others) which seek to 
minimize dispersive and anisotropic errors inherent in all 2- and 3-D FDTD schemes. We have developed 
comparisons that provide insights into the techniques that are not easily garnered from the publications 
that originally presented them. This work has been submitted to IEEE Transactions on Microwave 
Theory and Techniques [6]. Along these same lines, we have adapted a variation of the promising FDTD 
scheme proposed by Eric Forgy (IEEE Antennas and Propagation Society International Symposium, 
Orlando, FL, vol. 2, 1316-1319, July, 1999) for acoustic problems. This algorithm suffers much less grid 
dispersion and anisotropy than more traditional FDTD formulations. This work will be described in a 
future publication. 

We continue to maintain a Web site, www.fdtd.org , that seeks to list all archival publications related 
to the FDTD method. This site solicits input, in the form of comments posted about work appearing in 
the archival literature, from the entire community interested in the FDTD method (whether applied to 
acoustics, electromagnetics, or solid mechanics). 

Our investigations of the discretized worlds of FDTD methods have led us to a better understanding 
of numeric artifacts associated with resonances and to ways of alleviating these artifacts. Part of this 
work was presented as an invited talk in a special session organized by Prof. Allen Taflove (one of the 
co-founders of the FDTD method) [7]. This work is further described in a paper submitted to IEEE 
Transactions on Antennas and Propagation [8]. Additionally, we have codified some of the intrinsic 
properties of FDTD grids that has implications for the ways in which sources should be implemented 
[9]. 

Finally, we continue to develop code that is suitable for distribution to others (e.g., modularized, re­
usable, and well documented). Currently our focus is on the construction of code that can be run on a 
cluster of workstations using the Parallel Virtual Machine (PVM) suite of routines. The FDTD method, 
though straightforward, is computationally expensive and the ability to run simulations on a cluster of 
workstations greatly expands the the size of the problems it can address. Though the concepts behind 
PVM-based code are simple, the implementation details can be cumbersome and thus researchers often 
shy away from writing such code. By providing this code we hope to generate more interest in applying 
FDTD to meaningful problems as well as to entice others to aid in the development of future code. Our 
current visualization code, which is compatible with the output of the PVM-base code, employs the 
OpenGL graphics library to render the fields. 

IMPACT/APPLICATIONS 

Accurate and flexible numerical methods allow researchers to conduct any number of experiments with­
out having to resort to actual field experiments, i.e., the experiment is conducted on the computer. Al­
though numerical methods will never supplant field experiments, numerical methods (when used within 
their “region of validity”) do provide an extremely cost-effective means of conducting controlled ex­
periments. Our works enable more accurate and more efficient numerical solutions to a wide range of 
problems in acoustics, electromagnetics, and continuum mechanics. 
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TRANSITIONS 

Much of the knowledge we have gained has been disseminated via publications and conference presen­
tations. Additional material is available via the Web. Please refer to the Web site given in the header for 
copies of the PI’s publications or www.fdtd.org for other material pertinent to the FDTD method. 

RELATED PROJECTS 

This work is related to research in both high-frequency acoustics and long-range propagation. Numerical 
models, such as the FDTD method, can be used to predict the fields scattered from small objects under 
short-wavelength insonification or the propagation of long-wavelength signals over limited regions of 
the ocean. Additionally, this work is related to several other ONR-sponsored researchers including Shira 
Broschat, Eric Thorsos, Philip Marston, and Ralph Stephen. 
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